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Abstract

In this paper, we introduce the problem of jointly learning

feed-forward neural networks across a set of relevant but

diverse datasets. Compared to learning a separate network

from each dataset in isolation, joint learning enables us to

extract correlated information across multiple datasets to

significantly improve the quality of learned networks. We

formulate this problem as joint learning of multiple copies

of the same network architecture and enforce the network

weights to be shared across these networks. Instead of hand-

encoding the shared network layers, we solve an optimiza-

tion problem to automatically determine how layers should

be shared between each pair of datasets. Experimental re-

sults show that our approach outperforms baselines without

joint learning and those using pretraining-and-fine-tuning.

We show the effectiveness of our approach on three tasks:

image classification, learning auto-encoders, and image gen-

eration.

1. Introduction

Lack of training data remains one of the fundamental

challenges in training effective deep neural networks for

various visual recognition tasks. One potential solution is to

perform transfer learning from other relevant datasets, which

essentially amplifies the scale of the training data when

training a particular network. A common strategy for transfer

learning is to share network weights, i.e., either across the

entire network or through a few hand-encoded layers. This

strategy has proven to be effective in settings where the

input datasets are similar, or where there is prior knowledge

informing which layers of features to share. However, in

cases where the input datasets exhibit significant variation,

this strategy becomes sub-optimal, as it becomes unclear

how to determine the shared network layers.

In this paper, we consider the problem of jointly learning

neural networks from a collection of datasets that exhibit

significant variations in content and appearance (See Fig-

ure 1). We show that despite such significant differences

among the input datasets, they still present useful mutual

information, which we can use to boost the performance of

Figure 1: Results on black dress image generation with our

approach. (Left) Results of an image generator trained from

20K dress images. (Right) Results of an image generator

trained from 20K dress images and 200K face images.

learning each individual network. We achieve this goal by

introducing three novel ways for regularizing the network

weights across all datasets. First, instead of hand-encoding

the shared network weights, we formulate an optimization

problem to assign them automatically. Moreover, rather than

enforcing that shared network weights be identical, we use

soft constraints to penalize the differences between pairs of

shared network layers, allowing us to account for domain

shifts between datasets. Finally, we jointly optimize the

consistency among network weights using a robust norm,

which allows us to extract layer-wise dataset clusters for

weight-sharing.

Specifically, our approach takes a collection of datasets

for the same task as input and outputs a learned network

for each individual dataset. These networks share the same

architecture but have different, yet correlated, layers. We in-

tegrate learning shared network layers and learning network
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weights through a unified optimization problem. The objec-

tive function combines a task-specific loss and a consistency

term. The consistency term uses a robust norm to automati-

cally determine how each layer should be shared. We also

introduce a simple formulation to prioritize that the sharing

scheme is consistent across adjacent layers. Our formulation

admits effective optimization via iterative reweighted least

squares (or IRLS).

We demonstrate the effectiveness of our approach across

three diverse tasks: fine-grained image classification, learn-

ing auto-encoders, and image generation. These tasks range

from predicting a single label (i.e, fine-grained image clas-

sification) to dense predictions (i.e., learning auto-encoders

and image generation), and from supervised tasks (i.e., fine-

grained image classification) to unsupervised tasks (i.e.,

learning auto-encoders and image generation). Across these

tasks, we show that our approach is significantly better than

learning each network in isolation, using an L2-norm to

share weights, as well as pretraining-and-finetuning. In par-

ticular, our approach extracts useful mutual information from

datasets that seem to be visually uncorrelated, making our

approach suitable across a broad range of settings.

In summary, we present the following contributions in

this paper:

• We propose to study joint learning of neural networks

in the heterogeneous setting, where there exist salient

inter-dataset variations. We hope our method inspires

further research along this direction.

• We propose a robust norm to automatically determine

how to share layers between each pair of datasets.

• We demonstrate the effectiveness of our approach on

three tasks, including image classification, learning

auto-encoders, and image generation.

2. Related Works

Domain adaptation. Our problem falls in the general cat-

egory of domain adaptation. It is beyond the scope of this

paper to provide a comprehensive review of the literature.

We refer to [24, 9, 10, 22, 32] for recent advances and to [7]

for a recent survey on this topic. For discriminative tasks

(e.g., image classification and image segmentation), visual

domain adaptation techniques fall into supervised domain

adaptation techniques [6, 27] and unsupervised domain adap-

tation techniques [32, 16, 28]. Our approach falls into the

supervised category. A common approach for supervised

techniques is to share weights across networks. This strategy

works for the case where the domain shifts are relatively

small, but tends to break when the domain shifts are large.

A potential solution is to share weights across a subset of

predefined layers (e.g., [30]). However, this method requires

prior knowledge of the mutual information across datasets,

and we found that such information is not obvious, partic-

ularly between visually dissimilar datasets. In addition, it

becomes extremely difficult to hand-encode weights across

multiple networks. Instead, we solve a joint optimization

problem to determine the matched layers. Matching network

weights under the L2 norm has been considered in a recent

work [27]. The difference in this work is that we propose

to use robust norms to automatically extract matched net-

work weights between pairs of datasets, and we do so across

multiple datasets in a consistent manner.

State-of-the-art unsupervised domain adaptation tech-

niques build maps across the domains [16, 28, 35]. In par-

ticular, the inter-domain maps are enforced to be consistent.

These maps are usually trained using generative adversarial

networks [11] and training procedures described in follow-

up works [29, 1]. Although we do not consider unsupervised

domain adaptation in this paper, our approach can be poten-

tially used for joint training of the discriminators used in

each domain.

For synthesis tasks such as image generation, Liu et

al. [19] proposed a method for training a pair of generative

adversarial networks. Their strategy is similar to supervised

domain adaptation for image classification/segmentation, i.e.,

by sharing hand-encoded layers. In contrast, our approach

automatically learns matched layers, and we do so across

multiple domains.

Joint object matching. Joint linking of corresponding lay-

ers across multiple networks is related to a recent line of

work on joint optimization of object maps among image and

shape collections [14, 13]. Similar to our setting, the central

theme of these methods is to enforce the consistency of maps

along cycles, so that a noisy map between two different ob-

jects can be computed by composing maps along a path of

similar objects. In this paper, we apply this methodology

to link layers of neural networks. Another related line of

work [34, 16] focuses on utilizing the cycle-consistency con-

straint for regularization when training neural networks. Our

problem differs from these works in that the neural networks

optimized in our setting are associated with each dataset, and

we establish consistent correspondences between network

weights. In contrast, in these works the neural networks are

defined between pairs of datasets.

3. Problem Setup

In this Section, we formally define the joint neural net-

work learning problem we consider in this paper. Suppose

we are given n datasets for a specific task (e.g., image classi-

fication) and a neural network Gθ designed for it. Without

losing generality, we assume Gθ is a feed-forward neural

network that consists of L layers θ1, · · · , θL, and each layer

l has nl parameters. However, our approach can be easily

adapted for more sophisticated networks that connect layers

using a graph. Our goal is to learn n network parameters
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θ1, · · · , θn, one for each dataset. Instead of learning them

separately, we propose to learn them jointly. Unlike pre-

vious approaches that hand-encode the layers with shared

parameters, our approach solves an optimization problem to

simultaneously optimize the network parameters and deter-

mine the shared network layers.

Without losing generality, we denote the loss function

from dataset Ii as fi(θi). In Section 4, we will use fi(θi) to

present both the formulation and the optimization procedure.

In the following, we present the explicit expressions of fi(θi)
for the three tasks considered in this paper, namely, fine-

grained image classification, learning auto-encoders, and

learning generative models.

Task­Specific Loss Terms

Classification Loss. The first task we consider is image

classification. In this setting, each dataset is given by a set

of labeled images Ii = {(I, yI)}, where yI is the labeled

associated with I . The corresponding data dependent loss

function is then given by

fi(θi) =
1

|Ii|

∑
(I,yI)∈Ii

l(Gθi(I), yI),

where we set l(·, ·) as the cross entropy loss between pre-

dicted labels and ground-truth labels.

Auto-Encoder Loss. The second task is training an auto-

encoder for a collection of images. We will evaluate auto-

encoders indirectly, e.g., through their reconstruction loss on

testing images and in the application of image completion.

In this setting, each dataset Ii = {I} is given by a collection

of unlabeled images. Following [17], we directly use the

regression loss to define the auto-encoder loss:

fi(θi) =
1

|Ii|

∑
I∈Ii

‖I −Gθi(I)‖
2
F .

Generative Adversarial Loss. The third task is training a

generative adversarial network for a collection of real images.

We will adopt the BEGAN [2] architecture, where we share

the auto-encoders across different domains, and also adopt

the DCGAN [26] architecture, where we share all the net-

work parameters across different domains. Following [12],

we use the adversarial loss to optimize the generative models:

fi(θi) =
1

|Ii|

∑
I∈Ii

(L(Dθi(I))− L(Dθi(Gθi(z|z∈N )))),

where L(·) depends on the neural networks used. and are

discussed in Section 5.

4. Approach

We proceed to present the proposed approach for joint

learning of neural networks. In Section 4.1, we describe the

proposed formulation. Then in Section 4.2, we show how to

effectively solve the induced optimization problem.

4.1. Formulation

The proposed formulation combines a data term fdata and

a consistency term fcons. The data term fdata simply adds the

loss from each dataset together:

fdata =
n∑

i=1

fi(θi). (1)

The regularization term fcons forces the network parame-

ters to match. In the presence of diverse datasets, the desired

layer-wise network parameters θli, 1 ≤ i ≤ n, 1 ≤ l ≤ L
shall possess the following properties :

• For each layer l, the input datasets form clusters so

that for two datasets Ii and Ij that belong to the same

cluster, θli and θlj shall be close to each other. The

motivation comes from the success of sharing bottom

or top layers between a pair of networks for various

domain adaption tasks (e.g.,[19, 30]). In this paper, we

generalize it to multiple networks. However, we do not

assume the underlying clusters are given.

• The cluster structures are consistent between consec-

utive layers. This property is also motivated from the

common practice of sharing a block of consecutive lay-

ers between a pair of networks (e.g.,[19]). Again, we

do not assume these blocks are given.

Our formulation of fcons is motivated from [25], which

perform data clustering using robust fusion penalties. Specif-

ically, given a set of points p1, · · · ,pn ∈ R
d, these ap-

proaches solve the following problem to find perturbed

points x1, · · · ,xn ∈ R
d (c.f. [25]):

min
x1,··· ,xn

n∑

i=1

‖pi − xi‖
2 +

∑

1≤i<j≤n

ρ(‖xi − xj‖), (2)

where ρ(·) is a robust norm. In [25], the authors have shown

that the perturbed locations of the same cluster tend to be

identical.

We adapt this formulation to prioritize that the network

parameters at each layer form clusters. To ensure that the

cluster structures are consistent between adjacent layers, our

key idea is to apply the formulation on concatenated layer-

wise parameters (θli, θ
l+1
i ). In other words, we would like to

cluster (θli, θ
l+1
i ) together, which implicitly forces the cluster

structures to be consistent across adjacent layers:

fcons =
∑

1≤i<j≤n

L−1∑

l=1

ρ(‖(θli, θ
l+1
i )− (θlj , θ

l+1
j )‖, σl). (3)

Here we choose a variant of the Huber loss to define the

robust norm

ρ(x, σ) =
σ2x2

σ2 + x2
,
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Figure 2: “Social network" formed by 8 datasets in two rep-

resentative layers. For the first few layers, we found that all

datasets share similar parameters. For middle layers of en-

coder and decoder networks, we construct a graph by adding

an edge between i and j if and only if both of them are one of

the 3 most influential neighbors of each other. A community

of mutual influence can be observed. (Left) Middle layers of

encoder network, (Right) Middle layers of decoder network.

Between similar datasets, such as Dog(2) and Wolf(3) or

Fighter Aircraft(7) and Plane(8), more weights are shared

compared to other pairs. However, some connections are

not intuitive, such as Truck(6) and Fighter Aircraft(7), the

system finds it useful to decrease the overall objective.

where σ is a hyper-parameter that determines the transition

from x2 to σ2 when increasing x. We will discuss how to

set the hyper-parameters σl, 1 ≤ l ≤ L in Section 4.2.

Combining (1) and (3), we arrive at the following opti-

mization formulation for joint learning of neural networks:

min
{θi}

n∑
i=1

fi(θi) + λ
∑

1≤i,j≤n

L−1∑
l=0

ρ(‖(θli, θ
l+1
i )− (θj , θ

l+1
j )‖, σl)

(4)

In this paper, we choose λ = 10 for all the experiments.

We also find that due to the usage of the robust norm, the

performance of the resulting networks is insensitive to the

values of λ.

4.2. Optimization

Motivated from the success of applying iterative

reweighted least squares (or IRLS) for minimizing robust

norms (e.g., [8, 5]), we adapt IRLS to solve (4). In the

following, we first describe how to initialize the network pa-

rameters, and how to set the hyper-parameters σl, 1 ≤ l ≤ L.

We then present the IRLS procedure for solving (4).

4.2.1 Initializing Network Parameters and Determin-

ing Hyper-Parameters

We follow the standard practice in IRLS, which initializes

the network parameters by replacing the robust norm with

the L2-norm:

min{θi}
n∑

i=1

fi(θi) + λ
∑

1≤i<j≤n

L−1∑
l=0

‖(θli, θ
l+1
i )− (θlj , θ

l+1
j )‖2

(5)

(5) can be reformulated as a special case of minimizing a

general objective function:

min
θi,1≤i≤n

n∑
i=1

fi(θi) +
∑

1≤i<j≤n

L∑
l=1

cijl‖θ
l
i − θlj‖

2 (6)

where cijl > 0 are constants. As we will see later, (6) can

also be used for solving intermediate steps of IRLS. To avoid

breaking the flow of the paper, we defer the technical details

for solving (6) to Section 4.2.3.

Let θli
(0)

, 1 ≤ i ≤ n, 1 ≤ l ≤ L be the resulting network

parameters from (6). We set the layer-wise hyper-parameter

as

σl = mean
1≤i≤n

min
j 6=i

‖(θli
(0)

, θl+1
i

(0)
)− (θlj

(0)
, θl+1

j

(0)
)‖,

which works well in all of our experiments.

4.2.2 Reweighted Least Squares Regularization

We proceed to apply IRLS to minimize the objective function

in (4). Each iteration of IRLS consists of a weighting step

and an optimization step. In this paper, we consider splitting

the robust norm as ρ(x, σ) = σ2

σ2+x2 · x2, leading to the

following weighting-optimization procedure:

Weighting. Denote the network parameters at iteration

k − 1 as θli
(k−1)

. We introduce a weight w
(k)
ijl for term

ρ(‖(θli, θ
l+1
i )− (θlj , θ

l+1
j )‖, σl) at iteration k as

w
(k)
ijl = σl2

σl2+‖(θl
i
,θ

l+1

i
)−(θl

j
,θ

l+1

j
)‖2

. (7)

Intuitively, the dataset pairs that are further away from each

other at layer l will be associated with small weights.

Optimization. After determining the weights, we modify

(4) and solve the following optimization problem:

{θ
(k+1)
i } = min

{θi}

n∑
i=1

fi(θi) + λ
∑

1≤i,j≤n

L−1∑
l=0

w
(k)
ijl ‖(θ

l
i, θ

l+1
i )− (θlj , θ

l+1
j )‖2

(8)

(8) is again a special case of (6), and we will discuss the

optimization procedure in Section 4.2.3.
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Figure 3: For the Image Classification task, moving average

of test accuracy vs number of training iterations is plotted

for two datasets: Birds, Dogs (from left to right). Compared

baselines are Isolated-Training (Isolated), L2-regularization

(L2-reg), Shareall, Pretrain-Finetune (Finetune). Our method

is indicated as Joint. Consistency term loss (Closs) vs num-

ber of training iterations for Joint method is also plotted.

We can understand the behavior of IRLS as follows. For

layers with similar parameters, the corresponding weights

are close to 1, while for layers with dissimilar parameters,

the corresponding weights are close to 0. With such weights,

solving (8) would push the layers with similar weights to

be even closer to each other. In the mean-time, layers with

dissimilar weights are likely to be pulled away from each

other due to the data terms. In the end, layers tend to form

clusters.

Across all of our experiments, we found that IRLS con-

verges favorably fast. In our implementation, we monitor

δ(k) := max
1≤i<j≤n,1≤l≤L

|w
(k)
ijl − w

(k−1)
ijl |,

and terminate the IRLS procedure when δ(k) ≤ 10−2. In

our experiments, we found 4-8 iterations are sufficient for

convergence.

Figure 2 illustrates the links that connect layers with

similar optimized parameters over eight datasets for the task

of learning auto-encoders. We can see that the links reveal

meaningful shared information across the datasets.

4.2.3 Joint Network Optimization

In this section, we describe the technical details for solving

(6), which has been used in the variable initialization stage as

well as the reweighted least squares stage. When n is large,

it is hard to solve (6) directly, since it involves one copy of

the network for each dataset. Motivated from the success of

block-coordinate descent techniques for solving large-scale

optimization problems (c.f. [4]), we propose to solve (6)

by optimizing one network at a time while fixing the other

networks. Specifically, suppose we pick the i-th network

at the current iteration, and with θ
l

j , j 6= i, 1 ≤ l ≤ L we

denote the current parameters of other networks. Then it is

Method Birds Dogs Flowers Cars Aircrafts Avg

Joint(ours) 81.08 84.31 95.97 91.43 84.28 87.41

Isolated 78.06 76.70 95.95 92.33 84.62 85.53

L2Reg 64.92 83.40 52.38 66.94 27.19 58.97

L2Reg(25%) 62.52 64.83 67.84 82.54 68.30 69.21

L2Reg(50%) 67.97 67.84 69.38 79.72 65.87 70.16

Shareall 58.03 66.07 80.39 68.99 51.89 65.07

Finetune 78.02 76.31 95.31 91.83 84.86 85.27

Figure 4: Classificaiton accuracy on testing datasets.

Compared baselines are: Isolated-Training (Isolated), L2-

regularization (L2Reg), L2Reg with 25% weight shared,

L2Reg with 50% weight shared, Shareall, and Pretrain-

Finetune(Finetune). Our approach achieves the best overall

performance across all the datasets.

clear that (6) reduces to

min
θ

fi(θ)+λ

L∑

l=1

∑

j 6=i

cijl‖θ
l−

∑

j 6=i

cijlθ
l

j/
∑

j 6=i

cijl‖
2 (9)

Since
∑
j 6=i

cijlθ
l

j/
∑
j 6=i

cijl is a constant vector when optimiz-

ing θi, (9) can be considered as a standard network training

problem, and we apply stochastic coordinate descent for op-

timization. At each iteration, we train (9) with one epoch

before moving to the next iteration.

5. Experimental Evaluation

In this section, we present the experimental evaluations

of the proposed approach. We first describe the experimen-

tal setup. We then evaluate the benefits of the proposed

approach on each specific task. Please refer to the supple-

mental material for additional results.

5.1. Experimental Setup

Datasets. We summarize the datasets we used for each

specific task below. Please refer to the supplemental material

for a detailed specification:

• Fine-grained image classification. For this task, we

consider five fine-grained classification datasets: Cars

Dataset [18], FGVC-Aircraft Benchmark [21], Stan-

ford Dogs Dataset [15], Caltech-UCSD Birds-200-

2011 [33], 102 Category Flower Dataset [23] for

evaluating our joint learning approach. Note that the

appearance of these images are considered visually dis-

similar. We pick fine-grained classification tasks to
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demonstrate that across different domains, our approach

can still extract meaningful mutual information, lead-

ing to performance gains. For this task, we employ

InceptionV3 [31] network architecture, with pretrained

weights from ImageNet for initialization. In order to

mitigate over-fitting, we carry out the Inception-style

data augmentation methods: scale and aspect ratio vari-

ation, and image distortion.

• Auto-encoder learning. The second task considers im-

age completion from multiple domains of images with

auto-encoders. For this task, we employ a 9-layer auto-

encoder architecture (details are deferred to the sup-

plemental material). We picked images from 8 classes

(image samples are shown in Figure 2), which are Bird,

Dog, Wolf, Flower, Car, Truck, Plane, and Fighter Air-

crafts, using 500 images for training and 100 for testing.

All images are retrieved from ImageNet, and sampled

from the five fine-grained classification datasets. For

each image, we randomly cropped out a 22x22 square

for the image completion task.

• Image generation. In the third task we consider image

generation using a collection of images from differ-

ent domains. For this task, we employ the experimen-

tal setting (e.g., network architecture) from both [26]

and [2]. We have conducted three experiments which

involve six datasets. The first dataset is comprised

of video snapshots taken from [3], and contains 3K

images of humans walking down a street, while the

second dataset contains 10K synthetic images of hu-

mans walking, which we generated. The third dataset

is CelebA [20], which contains around 200K images,

and the fourth dataset is a collection of 20K black dress

images crawled from the web. We additionally use the

Flower dataset [23] and the Bird dataset [33].

Baseline Approaches. We consider the following four base-

lines to assess the proposed approach.

• Baseline I: Isolated-Training. The first baseline sim-

ply trains the network from each dataset independently.

To make a fair comparison between the proposed

approach and state-of-the-art approaches, we report

the performance of state-of-the-art methods that use

AlexNet with weights pre-trained on ImageNet.

Baseline II: L2-regularization The second baseline

replaces the robust-norm by the L2-norm for regulariz-

ing differences in layer-wise parameters. This baseline

assesses the benefit of using the robust norm for regu-

larization.

Baseline III: Shareall. The third baseline simply

shares the same network parameters across all the

datasets. This baseline is introduced to assess the im-

portance of sharing weights in an adaptive manner.
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Figure 5: For the Image Completion task, average L2 image

reconstruction loss for eight datasets vs number of training

iterations is plotted. Compared baselines follow the same

standard in Figure 3. We can see our Joint approach leads to

the lowest testing accuracy.

Baseline IV: Pretrain-Finetune. The fourth baseline

is generalized from the popular pretraining-fine-tuning

paradigm. In this case, we first train a joint model from

all the datasets by sharing weights. We then fine-tune

the joint model on each dataset independently. This

baseline is introduced to assess the advantage of solving

an optimization problem for joint training.

5.2. Task I: Image Classification.

Table 4 illustrates the testing accuracy of our approach

and baseline approaches. Our approach outperforms most

baseline approaches across all the input datasets. The im-

provement over Isolated-Training is significant in most cases,

especially on Birds and Dogs dataset. Figure 3 shows the

performance gain during training for those two datasets, and

only when consistency loss drops, there are significant boosts

in testing accuracy for Joint method. This demonstrates the

importance of sharing weights. L2-Regularization improves

over Isolated-Training in some cases. However, falsely link-

ing datasets together causes unstable behaviors, such as very

low testing accuracy on Aircrafts. Using the robust norm

not only lifts the testing accuracy but also insures at least

similar performance compared to Isolated-Training. This

shows the advantage of using a robust norm for regulariza-

tion in the presence of diverse datasets. A surprising result

is that Shareall leads to the lowest accuracy in some cases.

This can be understood from the fact that the five datasets

are diverse, and it is important to allow some difference

across the networks (e.g., using L2-Regularization). Finally,

Pretrain-Finetune improves over Shareall but only matches

the performance of Isolated-Training due to the quality of the

6 23



Random dataset samples

Figure 6: Image generation results. This figure shows the image generation results on three groups of datasets: Human

Walking (Real and Synthetic), Black Dress+Faces, and Flower+Bird. (Top Block) 4 Samples from each dataset in each

group. (Bottom Block) Image generation results. From top row to bottom row: we show Isolated, Shareall, Pretrain-finetune,

L2-regularization and our approach.

pretrained weights from Shareall. To test that our automatic

weight sharing scheme is better than sharing hand-crafted

features, we also propose two more baseline comparisons:

L2-Regularization with 25% and 50% weight shared in the

first few layers. Our automatic weight sharing scheme out-

performs those baseline methods by more than 15% in av-

erage. Code is publicly available at https://github.

com/zaiweizhang/Joint-Learning-of-NN.

5.3. Task II: Learning Auto­Encoders

Figure 5 illustrates the average reconstruction loss of our

approach and baseline approaches on the testing data (which

is left out during training). Compared to Isolated-Training

and Pretrain-Finetune, our joint learning method leads to

the smallest reconstruction error on the testing data. This

again shows the importance of sharing weights in a soft

manner and using a robust norm to filter out irrelevant lay-

ers. In particular, compared to Shareall, the performance

gain is significant. Moreover, Pretrain-Finetune results in

overfitting. The improvements over the other two baselines

are also noticeable. For example, the generalization be-

havior of Isolated remains poor. Figure 2 illustrates links

that connect layers with similar weights. We can see that

our approach successfully recover the intrinsic similarities

across the datasets, e.g., between the two animal datasets

and between the two airplane datasets.

5.4. Task III: Image Generation

We conducted the following three experiments on the

image generation task:

• Use DCGAN [26] to generate images of humans walk-

ing down a street by joint learning with 3K real and

10K synthetic images.

• Use BEGAN [2] to generate images of black dresses by

joint learning with 20K dress and 200K face images.
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• Use BEGAN [2] to generate images of flowers by joint

learning with 2K flower, 6K bird, and 200K face im-

ages.

Figure 6 shows the qualitative results of the image gen-

eration task. We can see that our approach leads to the

best general results across the input datasets. As for base-

line approaches, Isolated training easily overfits the training

data. As the datasets are quite diverse, Shareall, which

uses one network to generate images, tends to generate im-

ages that interpolate across different categories. The result-

ing images are thus unrealistic. Starting from Shareall and

then finetuning on each dataset certainly improves the visual

quality. However, the results are still not as competent as

our approach. L2-regularization, which uses a soft weight

sharing scheme, avoids the issue of generating mixed-class

images experienced by Shareall. However, the issue of L2-

regularization is that it evenly distributes the error, resulting

in overly smooth images.

6. Conclusions and Future Work

In this paper, we have introduced a method for joint learn-

ing of neural networks among a collection of relevant and

diverse datasets for the task of transfer learning. The key

idea behind our approach is to use a robust norm to automat-

ically identify which layers should be matched between each

pair of datasets. Our formulation also enforces consistency

of matches between adjacent layers. The formulation can

be easily optimized via iterative reweighted least squares.

Experimental results show the advantage of our approach

against four baseline approaches, namely, (1) training from

each dataset in isolation, (2) sharing the same weights across

all the networks, (3) finetuning from shareall, and (4) us-

ing the L2-regularization. The improvements are consistent

among the three tasks introduced in this paper, namely, fine-

grained image classification, learning auto-encoders, and

image generation.

There are ample opportunities for future research. We

would like to apply our method for other tasks such as depth

prediction and semantic segmentation. Moreover, we would

like to apply our approach to other types of neural networks

such as recurrent neural networks and densely connected net-

works. Moreover, we have used the same network architec-

ture across all datasets. It would be interesting to extend the

approach to jointly learn different but correlated networks,

e.g., networks for image segmentation and networks for im-

age classification may share similar convolutional layers.

Finally, we would like to extend our approach for unsuper-

vised domain adaptation across multiple datasets.
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